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Text Output

What is a discriminative 
problem?

• Discriminative problems (in contrast to, e.g., density estimation, clustering, or 
dimensionality reduction problems) seek to select the correct output 
for a given text input

• Neural networks models are very good discriminative models, but they a lot 
of training data to achieve good performance 



• Discriminative training objectives are similar to the following:

• That is, they directly model the posterior distribution over outputs given 
inputs.

• In many domains, we have lots of paired samples to train our models on, so 
this estimation problem is feasible.

• We have also developed very powerful function classes for modeling complex 
relationships between inputs and outputs.

Discriminative Models

L (x, y , W ) = log p(y | x ; W )



Text Classification
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logp(yi | x i; W )
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• Generative models are a kind of density estimation problem:

• The can, however, be used to compute the same conditional probabilities as 
discriminative models:

• The renormalization by p(x) is cause for concern, but making the Bayes 
optimal prediction under a 0-1 “cost” means we ignore the renormalization: 

Generative Models

L(x , y ,W ) = log p(x , y | W )

p(y | x) =
p(x,y)

p(x) =
P

y! p(x,y0)

öy = arg max
y

p(y | x)

= arg max
y

p(x, y )
p(x) =

P
y! p(x , y 0)

= arg max
y

p(x, y )



• A traditionally useful way of formulating a generative model involves the 
application of Bayes’ rule.

• This formulation posits the existence of two independent models, a prior 
probability over outputs p(y) and a likelihood p(x | y), which says how likely an 
input x is to be observed with output y. 

• Why might we favor this model?

• Humans learn new tasks quickly from small amounts of data

• But they often have a great deal of prior knowledge about the output space.

• Outputs are chosen that justify the input, whereas in discriminative models, 
outputs are chosen that make the discriminative model happy.

Bayes’ Rule

p(y | x) =
p(x | y )p(y )

p(x) =
P

y0 p(x | y 0)p(y 0)



But didnÕt we use generative models!
and give them up for some reason?



• Generative models frequently require modeling complex distributions, e.g., 
sentences, speech, images

• Traditionally: complex distributions -> lots of (conditional) independence 
assumptions (think naive Bayes, or n-grams, or HMMs)

• Neural networks are powerful density estimators that figure out their 
own independence assumptions

• The motivating hypothesis in this work:

• The previous empirical limits of generative models were due to bad 
independence assumptions, not the generative modeling paradigm per se.

Generative Neural 
Models



• Let’s investigate empirical properties of generative vs. 
discriminative recurrent networks commonly used in NLP applications

• Ng and Jordan (2001) show that linear models that are trained to generate 
have lower sample complexity—although higher asymptotic 
errors—than models that are trained to discriminative (Naive Bayer vs. 
logistic regression)

• What about nonlinear models such as neural networks?

• Formal characterization of the generalization behaviors of complex 
neural networks is difficult, with findings from convex problems 
failing to account for empirical facts about their generalization (Zhang 
et al, 2017)

Reasons for Optimism
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Warm up: Text ClassiÞcation

{real news, fake news}

x
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Discriminative Model

L (W ) =
X

i

logp(yi | x i; W )

y

x1 x2 x3 x4 x5

X

p(y | x)



Generative Model

x1 x2 x3 x4

vy

x2 x3 x4 x5

L(W) =

X

i

log p(xi | yi)p(yi)

p(x2 | x< 2, y) p(x3 | x< 3, y) p(x4 | x< 4, y)
p(x5 | x< 5, y)



AGNews DBPedia Yahoo Yelp Binary

Naive Bayes 90.0 96.0 68.7 86.0

Knesser-Ney Bayes 89.3 95.4 69.3 81.8

Discriminative LSTM 92.1 98.7 73.7 92.6

Generative LSTM 90.7 94.8 70.5 90.0

Bag of Words
(Zhang et al., 2015) 88.8 96.6 68.9 92.2

char-CRNN
(Xiao and Cho, 2016) 91.4 98.6 71.7 94.5

very deep CNN
(Conneau et al., 2016) 91.3 98.7 73.4 95.7

Full Dataset Results



Sample Complexity and Asymptotic Errors
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• With discriminative training, we can use these class embeddings as the softmax 
weights

• This technique is not successful since the model (understandably) does not want 
to predict the new class since it is trained discriminatively

• In the generative case, the model predicts instances of the new class with 
very high precision but very low recall

• When we do self-training on these newly predicted examples, we are able to 
obtain good results in the zero-shot setting (about 60% of the time, depending 
on the hidden class)

Zero-shot Learning



Class Precision Recall Accuracy

company 98.9 46.6 93.3

educational institution 99.2 49.5 92.8

artist 88.3 4.3 90.3

athlete 96.5 90.1 94.6

ofÞce holder 0 0 89.1

means of transportation 96.5 74.3 94.2

building 99.9 37.7 92.1

natural place 98.9 88.2 95.4

village 99.9 68.1 93.8

animal 99.7 68.1 93.8

plant 99.2 76.9 94.3

album 0.03 0.001 88.8

Þlm 99.4 73.3 94.5

written work 93.8 26.5 91.3

Zero-shot Learning



Adversarial Examples
• Generative models also provide an estimate of p(x), that is, the marginal 

likelihood of the input.

• The likelihood of the input is a good estimate of “what the model knows”. 
Adversarial examples that fall out of this are a good indication that the model 
should stop what it’s doing and get help.



• Generative models of text approach their asymptotic errors more 
rapidly, (better in small-data regime), are able to handle new classes, and can 
perform zero-shot learning by acquiring knowledge about the new class from 
an auxiliary task better, and they have a good estimate of p(x)

• Discriminative models of text have lower asymptotic errors, faster 
training and inference time

Discussion



Main Course:!
Sequence to Sequence Modeling



• Many problems in text processing can be formulated as sequence to sequence 
problems 

• Translation : input is a source language sentence, output is a target language 
sentence 

• Summarization : input is a document, output is a short summary 

• Parsing : input is a sentence, output is a (linearized) parse tree 

• Code generation : input is a text description of an algorithm, output is a 
program 

• Text to speech : input is an encoding of the linguistic features associated with 
how a text should be pronounced, output is a waveform. 

• Speech recognition : input is an encoding of a waveform (or spectrum), output 
is text.

Seq2Seq Modeling



• State of the art performance in most applications — provided 
enough data exists 

• But there are some serious problems 

• You can’t use “unpaired” samples of x and y to train the model 

• “Explaining away effects” - models like this learn to ignore 
“inconvenient” inputs (i.e., x), in favor of high probability 
continuations of an output prefix (y<i)

Seq2Seq Modeling



ÒSource modelÓ ÒChannel modelÓ

Generative: Seq2Seq Models
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ÒSource modelÓ ÒChannel modelÓ

The world is colorful because of the 
Internet...

�î�´�©�0�6�Ñ��	Z�x ...

Source model can be estimated from!
unpaired yÕs

Generative: Seq2Seq Models
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The world is colorful because of the 
Internet...

�î�´�©�0�6�Ñ��	Z�x ...

Generative: Seq2Seq Models

Is proposed output 
well-formed?

Does proposed output 
explain the observed input?

Model form avoids explaining away of 
inputs (Òlabel biasÓ).



¥ Features:

• Component models can be researched, parameterised, trained, and even 
deployed separately. 

• Make principled use of unpaired data. 

• Outputs have to explain the input 

• Mitigate risks due to label bias (explaining away of inputs) 

• Detection of inputs that the model will be “unfamiliar” with 

¥ This workÕs innovation: neural network component models

¥ Training Ñ straightforward.

¥ Decoding Ñ challenging.

Generative: Seq2Seq Models



Label Bias?
Label bias is a species of “explaining away” that!
causes trouble in directed (locally normalized) models.

a b c x y z"

a b c’ x y z"

a b’ c x y z"

d w"



Label Bias?
Label bias is a species of “explaining away” that!
causes trouble in directed (locally normalized) models.

a b c x y z"

a b c’ x y z"

a b’ c x y z"

d w"

a b’ d x y z"



• We retain the standard decision rule: 

• Challenges 

• Hypothesis space is very large (Σ* in fact)!
      -> We need to factorise the search problem 

• This is somewhat easy to do in a direct model (chain 
rule!) 

• But even there we can only approximate the search

Decoding



Direct model:

Decoding: Direct Model vs. 
Generative Model



Direct model:

Chain rule!
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Direct model:

Not perfect, but

Chain rule!

Decoding: Direct Model vs. 
Generative Model

(Compare to using greedy decoding with MEMMs)



Generative model (naive):

Decoding: Direct Model vs. 
Generative Model



Generative model (naive):

Decoding: Direct Model vs. 
Generative Model

Chain rule!



Generative model (naive):

Decoding: Direct Model vs. 
Generative Model

Probability doesnÕt work!
like this.



Decoding: Generative Model

Outline of solution: 

Introduce a latent variable z that determines when enough of the 
conditioning context has been read to generate another symbol 

How much of y do we need to read to model the jth token of x?



The Segment to Segment!
Neural Transduction Model

Conditioning context

Output sequence
Introduced as a direct model by!

Yu et al. (2016) 

ItÕs a good direct model! 

It also is exactly what we need!
for the channel model 

Similar model: Graves (2012)



Expensive to go through every token y_j in the vocabulary and calculate 

! ! !  

Use an auxiliary direct model p(y | x) to guide the search. 

! ! y

Decoding with the Segment to Segment!
Neural Transduction Model



Possible proposals: 

Chinese markets open 

Chinese markets closed 

Market close 

Financial markets

Decoding with the Segment to Segment!
Neural Transduction Model



Possible proposals: 

Chinese markets open 

Chinese markets closed 

Market close 

Financial markets

Expanded objective 

Decoding with the Segment to Segment!
Neural Transduction Model



Experiments

• Abstractive Sentence Summarisation 

• Machine translation



Abstractive Sentence 
Summarisation

• Task: generating a condensed version of a sentence while 
preserving its meaning. 

• Data: pair of headline and first sentence of the article. 

• Example: 

• Source : vietnam will accelerate the export of industrial goods 
mainly by developing auxiliary industries , and helping 
enterprises sharpen competitive edges , according to the 
ministry of industry on thursday . 

• Target : vietnam to boost industrial goods export 

• Evaluation using ROUGE* (higher is better)



Abstractive Sentence 
Summarisation

Model Parallel data Data for LM ROUGE-1 ROUGE-2 ROUGE-L

Direct 1m -- 30.78 14.67 28.57

Direct 3.8m -- 33.82 16.66 31.50

Channel + LM + bias 1m 1m 31.96 14.89 29.51

Direct + channel + LM + bias 1m 1m 33.18 15.65 30.45

Channel + LM + bias 1m 3.8m 32.51 15.00 29.90

Direct + channel + LM + bias 1m 3.8m 33.35 15.77 30.68

Channel + LM + bias 3.8m 3.8m 34.12 16.41 31.38

Direct + channel + LM + bias 3.8m 3.8m 34.41 16.86 31.83
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Abstractive Sentence 
Summarisation

• State-of-the-art results across many different 
models on ROUGE-2 

• Best existing model for incorporating unpaired data 

• Human annotators preferred summaries from 
generative model 2 to 1



Machine Translation

• Medium-sized Chinese-English news parallel data 

• Large LSTM language model trained on English 
news + target side of parallel data 

• Evaluation using BLEU-4 (higher is better)



Machine Translation

Model BLEU

seq2seq w/o attention 11.19

Seq2seq with attention 25.27

Direct model 23.33

Direct + LM + bias 23.33

Channel + LM + bias 26.28

Direct + channel + LM + bias 26.44G
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Discussion
• Generative models have benefits for “discriminative problems” 

• Learning efficiency 

• Improved sample complexity 

• Approach asymptotic error rate more rapidly, although 
higher asymptotic errors (empirical observation) 

• Incorporation of unpaired training samples / prior 
knowledge 

• Avoid label bias/explaining away effects



Thanks!


